Probability of Consensus in Spatial Opinion Models with Confidence Threshold

Mela Hardin & Nicolas Lanchier

Arizona State University

January 15, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

OUTLINE

Basic Voter Model

Graph Theory – tools

General Opinion Model with Confidence Threshold

Modified Opinion Dynamics with Confidence Threshold

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Imitation & Attraction Models

Basic Voter Model

Markov chain $\eta_t : \mathbb{Z} \to \{0, 1\}$

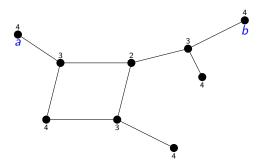
All opinions are equally likely

Each individual mimics a randomly chosen neighbor at rate one

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Basic Voter Model

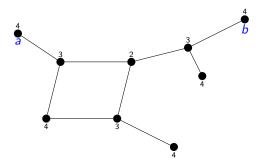
Markov chain $\eta_t : \mathbb{Z} \to \{0, 1\}$


All opinions are equally likely

Each individual mimics a randomly chosen neighbor at rate one

Graph Theory - tools

G = (V, E)

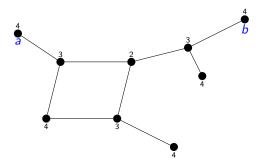


The (geodesic) distance from a to b, d(a, b) = 4

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Graph Theory – tools

G = (V, E)



The (geodesic) distance from *a* to *b*, d(a, b) = 4eccentricity ϵ of a vertex *v*

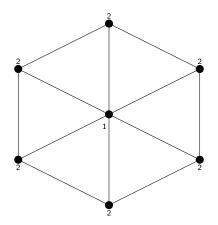
▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Graph Theory – tools

G = (V, E)

The (geodesic) distance from *a* to *b*, d(a, b) = 4eccentricity ϵ of a vertex *v* radius **r** = 2, diameter **d** = 4

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @


Graph Theory – example

radius $\mathbf{r} = 1$, diameter $\mathbf{d} = 2$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Graph Theory – example

radius $\mathbf{r} = 1$, diameter $\mathbf{d} = 2$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

General Opinion Model with Confidence Threshold au

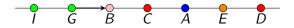
 $\mathcal{G} = \mathbb{Z} = (\mathcal{V}, \mathcal{E})$ is a spatial graph

Markov chain $\xi_t : \mathbb{Z} \to V$, where V is the vertex set of the opinion graph G = (V, E).

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

General Opinion Model with Confidence Threshold au

 $\mathcal{G} = \mathbb{Z} = (\mathcal{V}, \mathcal{E})$ is a spatial graph

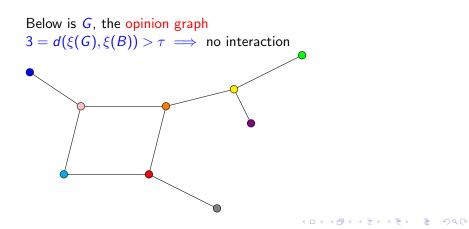

Markov chain $\xi_t : \mathbb{Z} \to V$, where V is the vertex set of the opinion graph G = (V, E).

Individuals interact if and only if their opinion distance $d(a, b) \leq \tau$

General Opinion Model - example

Let $\tau = 2$

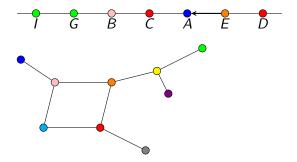
Interaction of G and B in \mathcal{G}



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

General Opinion Model – example

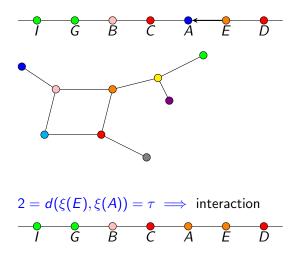
Let $\tau = 2$ Interaction of G and B in \mathcal{G}


 $\overrightarrow{I} \quad \overrightarrow{G} \quad \overrightarrow{B} \quad \overrightarrow{C} \quad \overrightarrow{A} \quad \overrightarrow{E} \quad \overrightarrow{D}$

General Opinion Model – example

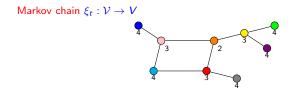
 $\tau = 2$

Interaction of E and A

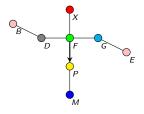


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

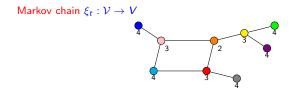
General Opinion Model – example


 $\tau = 2$

Interaction of E and A

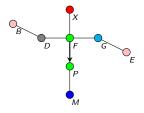

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで

▲□▶▲舂▶▲≧▶▲≧▶ ≧ の�?



Each individual imitates a randomly chosen neighbor at rate one

Individuals interact if and only if their opinion distance is at most τ (= 2)

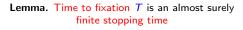


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Each individual imitates a randomly chosen neighbor at rate one

Individuals interact if and only if their opinion distance is at most τ (= 2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙


We define the process

$$X_t = \sum_{x \in \mathcal{V}} \mathbf{1}\{\epsilon(\xi_t(x)) \le \tau\} = |\{x \in \mathcal{V} : \epsilon(\xi_t(x)) \le \tau\}|,$$

that keeps track of the number of individuals whose opinion has eccentricity $\epsilon \leq \tau$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Imitation Model – blueprint

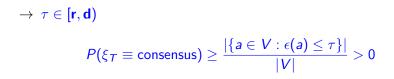
Lemma. (X_t) martingale

Optional Stopping Theorem to (X_t)

 $P(\xi_T \equiv \text{consensus}) > 0$

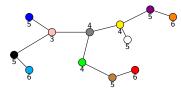
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

 $\rightarrow \tau \geq \mathbf{d}$

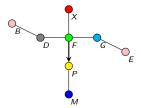

 $P(\xi_T \equiv \text{consensus}) = 1$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

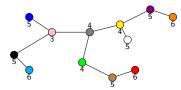
 $\rightarrow \tau \geq \mathbf{d}$


 $P(\xi_T \equiv \text{consensus}) = 1$

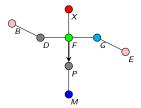
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@


<□▶ <週▶ < ≧▶ < ≧▶ = ● ○ ○ ○ ○

Markov chain $\zeta_t: \mathcal{V} \to V$


Each individual moves one opinion distance closer to a randomly chosen neighbor at rate one

Individuals interact if and only if their opinion distance is at most τ (= 2)


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Markov chain $\zeta_t: \mathcal{V} \to V$

Each individual moves one opinion distance closer to a randomly chosen neighbor at rate one

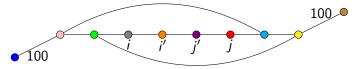
Individuals interact if and only if their opinion distance is at most τ (= 2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

The opinion graph of our model is acyclic since our result follows

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

```
Lemma (eccentricity inequalities)

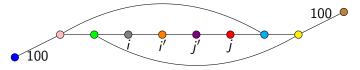

\epsilon_{i'} + \epsilon_{j'} \le \epsilon_i + \epsilon_j
```

The opinion graph of our model is acyclic since our result follows

```
Lemma (eccentricity inequalities)

\epsilon_{i'} + \epsilon_{j'} \le \epsilon_i + \epsilon_j
```

A non-example of a cyclic opinion graph


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The opinion graph of our model is acyclic since our result follows

```
Lemma (eccentricity inequalities)

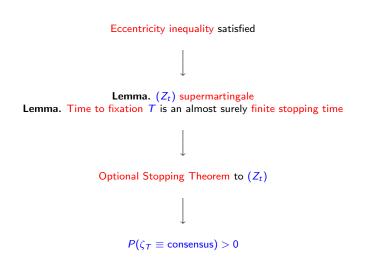
\epsilon_{i'} + \epsilon_{j'} \le \epsilon_i + \epsilon_j
```

A non-example of a cyclic opinion graph

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $\epsilon_i = 102 = \epsilon_j; \quad \epsilon_{i'} = 103 = \epsilon_{j'}$

This implies that $\epsilon_{i'} + \epsilon_{j'} \not\leq \epsilon_i + \epsilon_j$


We define the process

$$(Z_t) = \sum_{x \in \mathcal{V}} (\epsilon(\zeta_t(x)) - \mathbf{r}) = \sum_{a \in V} (\epsilon(a) - \mathbf{r}) |\{x \in \mathcal{V} : \zeta_t(x) = a\}|,$$

that keeps track of the eccentricity of the individuals' opinions

(ロ)、(型)、(E)、(E)、 E) の(()

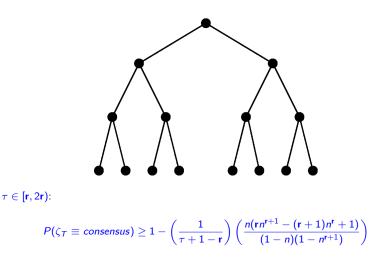
Attraction Model - blueprint

・ロト・「四ト・「田下・「田下・(日下

$\rightarrow \tau \geq \mathbf{d}$

 $P(\zeta_T \equiv \text{consensus}) = 1$

 $\rightarrow \tau \geq \mathbf{d}$

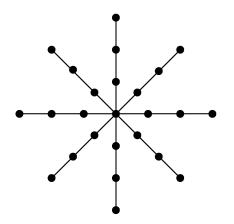

 $P(\zeta_T \equiv \text{consensus}) = 1$

 $\rightarrow \tau \in [\mathbf{r}, \mathbf{d})$ $P(\zeta_T \equiv \text{consensus}) \ge 1 - \frac{1}{|V|} \sum_{a \in V} \left(\frac{\epsilon(a) - \mathbf{r}}{\tau + 1 - \mathbf{r}} \right)$

▲ロト ▲御 ト ▲臣 ト ▲臣 ト → 臣 → の々ぐ

Attraction Model – G: full *n*-ary tree

Attraction Model – G: full *n*-ary tree



- ▲ロト ▲園ト ▲国ト ▲国ト 三国 - めんぐ

Attraction Model – G: star-like graph

<ロ>

Attraction Model – G: star-like graph

 $\tau \in [\mathbf{r}, 2\mathbf{r})$:

$$P(\zeta_T \equiv \textit{consensus}) \geq 1 - \left(\frac{1}{\tau + 1 - \mathsf{r}}\right) \left(\frac{\mathsf{r}(\mathsf{r} + 1)n}{2(1 + \mathsf{r}n)}\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Thank you!