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L Background

L Markov Chains

Discrete-Time Markov Chains

A discrete-time Markov chain is defined by:

m A sequence of random variables
(Xn) >0 € a countable set S
characterized by the Markov
property,

m Transition matrix P,

m Initial distribution \.
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Time-Reversible VS Time-Irreversible

m A Markov chain with transition matrix P and stationary
distribution 7 satisfying

P =m, Zﬂ':l

i€eS

is called time-reversible if it satisfies the detailed balance
condition, i.e
miPij = miPji

m A Markov chain is called time-irreversible if the detailed
balance condition is not satisfied. Hence, the transition
probabilities for the reversed process is given by

~ T

J
Pij=—=Pj;
i
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Objective

m Time-irreversible Markov chains can arise in applications in

m Economics
Physics

Social sciences
Biology

Etc.

m Our goal is to develop efficient computational tools for the
study of transition process in large and complex Markov
chains.
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L Background

LTra\nsition Path Theory

Transition Path Theory: E & Vanden-Eijnden (2006)

Transition Path Theory (TPT) is a framework to analyze the
statistical properties of reactive trajectories i.e. those going from A
to B without returning to A in between.
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Key Concepts of Transition Path Theory

The forward committor function g™ = (g;")ies is the probability that
starting at a state /, the trajectory will reach set B prior to set A and
satisfies:

9 =X Pugfs i€S\(AUB)

Jj€
g =0, icA (1)
qf:l, i€eB
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Key Concepts of Transition Path Theory

The forward committor function g™ = (g;")ies is the probability that
starting at a state /, the trajectory will reach set B prior to set A and
satisfies:

4 = S Pugl. i€S\(AUB)
JjE

g =0, icA (1)
qf:l, i€eB

The backward committor g~ = (q; )ies is the probability that the
process arriving at state /i last came from A rather than B and satisfies:

a7 = X Puya;, i€S\(AUB)
=

g =1 ieA (2)
g =0, ]

with Is,-,j being the transition matrix for the time-reversed process
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Key Concepts of Transition Path Theory

The probability current of reactive trajectories is given by

£ miq; Pija;, ifi#) (3)
" 0, otherwise
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Key Concepts of Transition Path Theory

The probability current of reactive trajectories is given by

£ miq; Pija;, ifi#) (3)
" 0, otherwise

The effective current

fii = max{f; — f,;,0} (4)
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Key Concepts of Transition Path Theory

The probability current of reactive trajectories is given by

£ Wiq,-_Pi,qu*, ifi#j
1= . (3)
0, otherwise
The effective current
fi; = max{fi; — £, 0} (4)

Transition rate

VAB = Z fij = Z fij (5)

icAjes i€sjeB
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[llustrative example

Original MC Time-reversed MC

Transition rate:
Vap=1/15
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Challenges with Time-Irreversible Markov Chains

"

|1
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Transition rate:
Vab:].

Figure: A cyclic effective current (green). Transition probabilities (black).
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LAlgorithmic Development

Cycle Removal Algorithm for Obtaining Acyclic Current

We develop an algorithm for generating a weighted directed acyclic
graph G(S,{F"})

Input: Weighted directed graph G(S,{f"})
Output: Weighted directed acyclic graph G(S,{F*})
The main body
while flag == 0 do
Find cycle in G(S,{f*}) using DFS algorithm
if cycle is found then
Find minimum current in the cycle 1.
for each edge in the cycle
subtract minimum current from edge

end for
else

| flag==1
end

end
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Application to Gene Regulatory Network
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L Background

GRN for Budding Yeast Cell Cycle

Chen, Csikasz-Nagy, Gyorffy, Val, Novak, & Tyson (2000)
Li, Long, Lu, Ouyang, & Tang (2003)
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Figure: Budding Yeast Cell Cycle. Figure: Gene-regulatory network of
budding yeast.
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Deterministic Model

m a; = 1 for protein j activating
protein j.

m a; = —1 for protein j repressing
protein i.

m Each node i has only two
states, 5; =1 and S; = 0.

1, Za,-jsj(t) >0
0, Za,-ij(t) <0
S(e), Y aySi(t) =0

Figure: Dynamical trajectories
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i Ch3 SBF MBF Chl2 Sicl Chb56 Cdhl ChI2 Meml/SFF Cdc014 Sw Phase

ololo|lo|lo|lo|olo|o|o|o=
o|lololao|lao| oo —| —| —|—]—
o|lololo|o| oo —| —| —|—]—

Figure: Dynamica| trajectories Figure: BiOlOgiCBl pathway of deterministic
model
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Stochastic Model: Zhang, Qian, Ouyang, Deng, Li, & Tang (2006)

let v = As

P{Sl(t-f—l), ..4,511(1’-i-:|.)|51(t)7 ...,Sll(t)} = ﬂ}ilP{s;(t+1)|sl( )7 ...,Sll(t)} (6)
where if v; #0

eBvi
]P){S,'(t-i- 1) = ].|51(t)7 ...,Sll(t)} = m (7)
e bBvi
P{S,'(t—‘r].) :0|51(t),...7511(t)} = m (8)
if Vi = 0
Pisi(t+1) = 5(8)[51(£), s 511(£)} = H% (9)
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Results of Cycle Removal Algorithm to GRN

Sic1, Cdh 1M, Cdc20, Swis

24%

3

965, Sic1, Mcm1, BEE88, Swis

V.é: Clb1,2, Mcm1, BEE2E, Swis
22% 2 > c

>

,,,}' CIni,2, Cbs,6, Clb1,2, Mcm1, BEE28

SBF, MBF, CIn1,2, CIb5,6, Clb1,2, Mcm 1 ‘

€In1.2, Clb1,2, Mcm1, Cdc20, Swis

e

%
905, .{BF‘ MBF, GIfiZICIB516

Figure: Acyclic current through cell cycle for « =5, 3 = 6.
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Results of Cycle Removal Algorithm to Stochastic Model

Sic1, Cdh 1M, Cdc20, Swis

Cln1 +2, CIb1,2, Mcm1, Cdc20, Swis

Suﬂ Clb1,2, Mcm1, - Swis

C\b1 2, Mcm1, - Swis

CIn1,2, CIb5,6, Clb1,2, Mom1, -

SBF MBF. CIn1,2, CIb5,6, Clb1,2, Mcm!‘

a5
cl )
Sic1, Cdh1 a0, SBF, MBF, GIRfi2ICIb516
- .é; Vo, G

Figure: Acyclic current through cell cycle for « =5, = 3.
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Mutation Analysis (Cameron & Middlebrooks)

We use our cycle removal algorithm to identify essential edges in
the GRN.
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LApplication to Gene Regulatory Network

L Mutation Analysis

Mutation Analysis (Cameron & Middlebrooks)

We use our cycle removal algorithm to identify essential edges in
the GRN.

m Recompute transition matrix

sy

m Run cycle removal algorithm on
G(S,{fT}) to obtain acyclic

current

m Run DFS algorithm to obtain
pathways
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L Mutation Analysis

Analysis of Deterministic Model

Non-Essential Edges

Essential Edges

No effect: Cln3 - Cln3
Clb5,6 - Sicl Cln3 - SBF
Clb5,6 = Cdhl Cln3 - MBF
Cdhl - Clb1,2 SBF - (Cin1,2

Clb1,2 - Sicl
Clb1,2 - Cdc20/Cdc14

Small effect:

Clb5,6 - Mcm1 /SFF
Clb1,2 - Cdhl
Clb1,2 - Mcm1 /SFF
Clb1,2 - Swis
Mcm1 /SFF - Clb1,2
Mcm1 /SFF - Cdc20/Cdc14

Lost of G2 phase:
Cln1,2 - Cdh1
Sicl - Clb5,6
Clb5,6 = Clb1,2

Total: 14

MBF - CIn5,6
Cln1,2 - Cin1,2
Cln1,2 - Sicl
Sic1 - Clb1,2
Clb1,2 - SBF
Clb1,2 - MBF
Mcm1/SFF - Mcm1/SFF
Mcm1/SFF - Swi5
Cdc20/Cdc14 - Sicl
Cdc20/Cdc14 - Clb5,6
Cdc20/Cdc14 - Cdhl
Cdc20/Cdc14 - Clb1,2
Cdc20/Cdc14 - Cdc20/Cdc14
Cdc20/Cdc14 - Swi5
Swi5 - Sicl
Swi5 - Swis

Total: 20
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Analysis of Stochastic Model

Non-Essential Edges

Essential Edges

No effect:
Clb5,6 - Sicl
Clb5,6 - Cdhl
5 Cdhl - Clb1,2
Clb1,2 - Sicl
Clb1,2 - Cdc20/Cdc14

Lost of G2 phase:
Clnl,2 - Cdhl
4 Cln1,2 - Sicl
Sicl - Clb5,6
Clb5,6 - Clb1,2

Total: 30

Small effect:
Cln3 - Cln3
Cln3 - MBF
Cln1,2 - Cin1,2
Sic1 - Clb1,2
Clb1,2 > SBF
Clb1,2 » MBF
Clb5,6 - Mcm1 /SFF
Clb1,2 - Cdhl
Clb1,2 -» Mcm1 /SFF
Clb1,2 - Swi5
Mcml /SFF - Clb1,2
Mcm1 /SFF - Cdc20/Cdc14
Mcm1 /SFF - Mcm1/SFF
Mcm1 /SFF = Swi5
Cdc20 /Cdc14 - Sicl
Cdc20 /Cdc14 - CIb5,6
Cdc20 /Cdc14 - Cdhl
Cdc20 /Cdc14 - Clb1,2
Cdc20 /Cdc14 - Cdc20 /Cdc14
Cdc20 /Cdc14 - Swi5
Swi5 - Swis

21

Lost of S and G2 phases:
MBF - Clb5,6

Lost of S, G2 and M phases:
Swi5 - Sicl

No pathway found
Cln3 - SBF
SBF = (Cin1,2

Total:4

[EEN
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Comparison of Results

Deterministic R . Stochastic
No effect: Small effect:
Clb5,6 — Sicl Cln3 - Cln3
Clb5,6 - Cdhl Cln3 - MBF
Cdhl - Clb1,2 Cin1,2 - Cin1,2
Clb1,2 - Sicl Sicl - Clb1,2
Clb1,2 - Cdc20/Cdc14 Clb1,2 - SBF
Small effect: Clb1,2 » MBF
Mcm1 /SFF - Mcm1/SFF

Clb5,6 —» Mcm1 /SFF
Clb1,2 - Cdh1
Clb1,2 - Mcm1 /SFF
Clb1,2 - Swi5
Mcm1 /SFF - Clb1,2
Mcm1 /SFF - Cdc20/Cdc14

Lost of G2 phase:
CIn1,2 - Cdh1
Sicl - Clb5,6

Clb5,6 - Clb1,2

Mcm1 /SFF - Swi5
Cdc20 /Cdc14 - Sicl
Cdc20 /Cdc14 - Clb5,6
Cdc20 /Cdc14 - Cdhl
Cdc20 /Cdc14 - Clb1,2
Cdc20 /Cdc14 - Cdc20 /Cdc14
Cdc20 /Cdc14 - Swi5
Swi5 - Swi5

Lost of G2 phase:
CIn1,2 - Sicl

Lost of S and G2 phases:
MBF - Clb5,6

Lost of S, G2 and M phases:
Swi5 - Sicl
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L Conclusion

Conclusion

m We developed a methodology supported by theoretical results
for quantifying transition processes in time-irreversible Markov
chains.

m This technique is applied to the Budding yeast GRN.

m Stochastic GRN is much more robust to mutation analysis
compared to deterministic GRN.

Future research:

m Develop strategy for selecting key subset of nodes to make
applicable to larger and more complex networks.
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Framework for Quantifying Transitions

Cameron and Vanden-Eijnden (2013)

Two modified Markov jump processes were designed for the
original time-reversible irreducible Markov chain.

m The stationary probability current coincided with the
probability current of reactive trajectories.

m The stationary probability current was equal to the reactive
current.

Cameron and Middlebrooks

m Combined these two propositions to a generalized version for
time-irreversible Markov chains.
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Theorem (Transition Path Process: Cameron & Middlebrooks)

Suppose we have defined a current e satisfying the following properties:
[1.] Non-negativity: e; > 0
[2.] The conservation of current: Yi € Sg, > (ej — €i) =0
J€S
[3.] Transition rate: Y > ej=>. > ej=vas

icAjes i€SjeB
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Theorem (Transition Path Process: Cameron & Middlebrooks)

Suppose we have defined a current e satisfying the following properties:
[1.] Non-negativity: e; > 0
[2.] The conservation of current: Yi € Sg, > (ej — €i) =0
J€Ss

[3.] Transition rate: Y > ej=>. > ej=vas

i€Ajes ies jeB
Let S =S\ (AUB) and R := {i € Sg|3j € S : ej > 0}. Consider the process
on the state space 5 = R U {s} defined by the generator M given by

My = 3%, i,j€R
f— &ij 1
M;s _1%:3 prol i€R (10)
I\/’s':ﬁ'zeg7 jGR
IEA

where pr = > ui.
i€R
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Theorem (Transition Path Process: Cameron & Middlebrook

Suppose we have defined a current e satisfying the following properties:
[1.] Non-negativity: e; > 0
[2.] The conservation of current: Yi € Sg, > (ej — €i) =0
J€Ss

[3.] Transition rate: Y > ej=>. > ej=vas

i€Ajes ies jeB
Let S =S\ (AUB) and R := {i € Sg|3j € S : ej > 0}. Consider the process
on the state space 5 = R U {s} defined by the generator M given by

My = 3%, i,j€R
f— &ij 1
M;s _1%:3 prol i€R (10)
I\/’s':ﬁ'zeg7 jGR
IEA

where pr = > ui. Then the desired invariant probability distribution of the
i€R
; i€R .
o ) and the stationary
1—pr, Ii=s
current in the network with state space S and the generator matrix M coincides
with the current e in the original network.

transition path process is given by fi; = {
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Framework for Quantifying Transitions

Outline of proof

To show the stationary current in the network with state space S
and the generator matrix M coincides with the current e in the
original network we must show the following:

m The invariant distribution in the modified MJP is ji, i.e show
> @M =o.
iERU{s}
m The stationary current in the MJP with generator matrix M
coincides with stationary current E;; = ¢;; — ¢; ;.
]
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