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Background

Markov Chains

Discrete-Time Markov Chains

A discrete-time Markov chain is defined by:

A sequence of random variables
(Xn)n≥0 ∈ a countable set S
characterized by the Markov
property,

Transition matrix P,

Initial distribution λ.
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Background

Markov Chains

Time-Reversible VS Time-Irreversible

A Markov chain with transition matrix P and stationary
distribution π satisfying

πP = π,
∑
i∈S

π = 1

is called time-reversible if it satisfies the detailed balance
condition, i.e

πiPi ,j = πjPj ,i

A Markov chain is called time-irreversible if the detailed
balance condition is not satisfied. Hence, the transition
probabilities for the reversed process is given by

P̂i ,j =
πj
πi
Pj ,i
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Background

Markov Chains

Objective

Time-irreversible Markov chains can arise in applications in

Economics
Physics
Social sciences
Biology
Etc.

Our goal is to develop efficient computational tools for the
study of transition process in large and complex Markov
chains.
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Background

Transition Path Theory

Transition Path Theory: E & Vanden-Eijnden (2006)

Transition Path Theory (TPT) is a framework to analyze the
statistical properties of reactive trajectories i.e. those going from A
to B without returning to A in between.
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Background

Transition Path Theory

Key Concepts of Transition Path Theory

The forward committor function q+ = (q+
i )i∈S is the probability that

starting at a state i , the trajectory will reach set B prior to set A and
satisfies: 

q+
i =

∑
j∈S

Pi,jq
+
j , i ∈ S \ (A ∪ B)

q+
i = 0, i ∈ A

q+
i = 1, i ∈ B

(1)

The backward committor q− = (q−i )i∈S is the probability that the
process arriving at state i last came from A rather than B and satisfies:

q−i =
∑
j∈S

P̂i,jq
−
j , i ∈ S \ (A ∪ B)

q−i = 1, i ∈ A

q−i = 0, i ∈ B

(2)

with P̂i,j being the transition matrix for the time-reversed process
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Background

Transition Path Theory

Key Concepts of Transition Path Theory

The probability current of reactive trajectories is given by

fi ,j =

{
πiq
−
i Pi ,jq

+
j , if i 6= j

0, otherwise
(3)

The effective current

f +
i ,j = max{fi ,j − fj ,i , 0} (4)

Transition rate

νAB =
∑

i∈A,j∈S
fij =

∑
i∈S ,j∈B

fij (5)
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Background

Transition Path Theory

Illustrative example
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Background

Transition Path Theory

Challenges with Time-Irreversible Markov Chains

a b
1 0.51

0.9 0.5

1 1.82 1

0.820.82

1

3

2

Transition rate: 
𝜈"#=1

0 0

Figure: A cyclic effective current (green). Transition probabilities (black).
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Algorithmic Development

Cycle Removal Algorithm for Obtaining Acyclic Current

We develop an algorithm for generating a weighted directed acyclic
graph G (S , {F+})

Input: Weighted directed graph G (S , {f +})
Output: Weighted directed acyclic graph G (S , {F+})
The main body
while flag == 0 do

Find cycle in G (S , {f +}) using DFS algorithm
if cycle is found then

Find minimum current in the cycle f +
min

for each edge in the cycle
subtract minimum current from edge
end for

else
flag == 1

end

end
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Application to Gene Regulatory Network

Background

Application to Gene Regulatory Network
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Application to Gene Regulatory Network

Background

GRN for Budding Yeast Cell Cycle

Chen, Csikasz-Nagy, Gyorffy, Val, Novak, & Tyson (2000)
Li, Long, Lu, Ouyang, & Tang (2003)

Figure: Budding Yeast Cell Cycle.
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Figure: Gene-regulatory network of
budding yeast.
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Application to Gene Regulatory Network

Background

Deterministic Model

Figure: Dynamical trajectories

aij = 1 for protein j activating
protein i .

aij = −1 for protein j repressing
protein i .

Each node i has only two
states, Si = 1 and Si = 0.

Si (t + 1) =


1,

∑
i
aijSj(t) > 0

0,
∑
i
aijSj(t) < 0

Si (t),
∑
i
aijSj(t) = 0
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Application to Gene Regulatory Network

Background

Figure: Dynamical trajectories Figure: Biological pathway of deterministic
model
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Application to Gene Regulatory Network

Background

Stochastic Model: Zhang, Qian, Ouyang, Deng, Li, & Tang (2006)

let v = As

P{s1(t+1), ..., s11(t+1)|s1(t), ..., s11(t)} = Π11
i=1P{si (t+1)|s1(t), ..., s11(t)} (6)

where if vi 6= 0

P{si (t + 1) = 1|s1(t), ..., s11(t)} =
eβvi

eβvi + e−βvi
(7)

P{si (t + 1) = 0|s1(t), ..., s11(t)} =
e−βvi

eβvi + e−βvi
(8)

if vi = 0

P{si (t + 1) = si (t)|s1(t), ..., s11(t)} =
1

1 + e−α
(9)
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Application to Gene Regulatory Network

Background

Results of Cycle Removal Algorithm to GRN

74%

24%

96%

71%

97%

91%

90%

85%

70%

91%

99%

98%

73%

24%

23%

22%

Cln3, Sic1, Cdh1

SBF, MBF, Sic1, Cdh1

SBF, MBF, Cln1,2, Sic1, Cdh1

SBF, MBF, Cln1,2

SBF, MBF, Cln1,2, Clb5,6

SBF, MBF, Cln1,2, Clb5,6, Clb1,2, Mcm1

Cln1,2, Clb5,6, Clb1,2, Mcm1, Cdc20

Clb1,2, Mcm1, Cdc20, Swi5

Sic1, Cdh1,  
Cdc20, Swi5

Sic1, Cdh1, 
Swi5

Sic1, Cdh1

Sic1, Clb1,2, Mcm1, Cdc20, Swi5

Sic1, Mcm1, Cdc20, Swi5

Sic1, Cdh1, Mcm1, Cdc20, Swi5

Cln1,2, Clb1,2, Mcm1, Cdc20, Swi5

Figure: Acyclic current through cell cycle for α = 5, β = 6.



Quantifying Flows in Time-Irreversible Markov Chains: Application to Gene Regulatory Network

Application to Gene Regulatory Network

Background

Results of Cycle Removal Algorithm to Stochastic Model
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Figure: Acyclic current through cell cycle for α = 5, β = 3.
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Application to Gene Regulatory Network

Mutation Analysis

Mutation Analysis (Cameron & Middlebrooks)

We use our cycle removal algorithm to identify essential edges in
the GRN.

Cell Size

SBF

Cln3

MBF

Sic1

Clb1,2

Cln1,2

Cdh1

Clb5,6

Swi5Cdc20/Cdc14

Mcm1/SFF

Recompute transition matrix

Run cycle removal algorithm on
G (S , {f +}) to obtain acyclic
current

Run DFS algorithm to obtain
pathways
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Application to Gene Regulatory Network

Mutation Analysis

Analysis of Deterministic Model

No effect:
𝐶𝑙𝑏5,6 → 𝑆𝑖𝑐1
𝐶𝑙𝑏5,6 → 𝐶𝑑ℎ1
𝐶𝑑ℎ1 → 𝐶𝑙𝑏1,2
𝐶𝑙𝑏1,2 → 𝑆𝑖𝑐1

𝐶𝑙𝑏1,2 → 𝐶𝑑𝑐20/𝐶𝑑𝑐14

Small effect:
𝐶𝑙𝑏5,6 → 𝑀𝑐𝑚1 /𝑆𝐹𝐹

𝐶𝑙𝑏1,2 → 𝐶𝑑ℎ1
𝐶𝑙𝑏1,2 → 𝑀𝑐𝑚1 /𝑆𝐹𝐹

𝐶𝑙𝑏1,2 → 𝑆𝑤𝑖5
𝑀𝑐𝑚1 /𝑆𝐹𝐹 → 𝐶𝑙𝑏1,2

𝑀𝑐𝑚1 /𝑆𝐹𝐹 → 𝐶𝑑𝑐20/𝐶𝑑𝑐14

Lost of G2 phase:
𝐶𝑙𝑛1,2 → 𝐶𝑑ℎ1
𝑆𝑖𝑐1 → 𝐶𝑙𝑏5,6
𝐶𝑙𝑏5,6 → 𝐶𝑙𝑏1,2

Non-Essential Edges

𝐶𝑙𝑛3 → 𝐶𝑙𝑛3
𝐶𝑙𝑛3 → 𝑆𝐵𝐹
𝐶𝑙𝑛3 → 𝑀𝐵𝐹
𝑆𝐵𝐹 → 𝐶𝑙𝑛1,2
𝑀𝐵𝐹 → 𝐶𝑙𝑛5,6
𝐶𝑙𝑛1,2 → 𝐶𝑙𝑛1,2
𝐶𝑙𝑛1,2 → 𝑆𝑖𝑐1
𝑆𝑖𝑐1 → 𝐶𝑙𝑏1,2
𝐶𝑙𝑏1,2 → 𝑆𝐵𝐹
𝐶𝑙𝑏1,2 → 𝑀𝐵𝐹

𝑀𝑐𝑚1/𝑆𝐹𝐹 → 𝑀𝑐𝑚1/𝑆𝐹𝐹
𝑀𝑐𝑚1/𝑆𝐹𝐹 → 𝑆𝑤𝑖5
𝐶𝑑𝑐20/𝐶𝑑𝑐14 → 𝑆𝑖𝑐1
𝐶𝑑𝑐20/𝐶𝑑𝑐14 → 𝐶𝑙𝑏5,6
𝐶𝑑𝑐20/𝐶𝑑𝑐14 → 𝐶𝑑ℎ1
𝐶𝑑𝑐20/𝐶𝑑𝑐14 → 𝐶𝑙𝑏1,2

𝐶𝑑𝑐20/𝐶𝑑𝑐14 → 𝐶𝑑𝑐20/𝐶𝑑𝑐14
𝐶𝑑𝑐20/𝐶𝑑𝑐14 → 𝑆𝑤𝑖5

𝑆𝑤𝑖5 → 𝑆𝑖𝑐1
𝑆𝑤𝑖5 → 𝑆𝑤𝑖5

Essential Edges

5

Total: 20

6

3

Total: 14
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Application to Gene Regulatory Network

Mutation Analysis

Analysis of Stochastic Model

No effect:
𝐶𝑙𝑏5,6 → 𝑆𝑖𝑐1
𝐶𝑙𝑏5,6 → 𝐶𝑑ℎ1
𝐶𝑑ℎ1 → 𝐶𝑙𝑏1,2
𝐶𝑙𝑏1,2 → 𝑆𝑖𝑐1

𝐶𝑙𝑏1,2 → 𝐶𝑑𝑐20/𝐶𝑑𝑐14

Lost of G2 phase:
𝐶𝑙𝑛1,2 → 𝐶𝑑ℎ1
𝐶𝑙𝑛1,2 → 𝑆𝑖𝑐1
𝑆𝑖𝑐1 → 𝐶𝑙𝑏5,6
𝐶𝑙𝑏5,6 → 𝐶𝑙𝑏1,2

Small effect:
𝐶𝑙𝑛3 → 𝐶𝑙𝑛3
𝐶𝑙𝑛3 → 𝑀𝐵𝐹

𝐶𝑙𝑛1,2 → 𝐶𝑙𝑛1,2
𝑆𝑖𝑐1 → 𝐶𝑙𝑏1,2
𝐶𝑙𝑏1,2 → 𝑆𝐵𝐹
𝐶𝑙𝑏1,2 → 𝑀𝐵𝐹

𝐶𝑙𝑏5,6 → 𝑀𝑐𝑚1 /𝑆𝐹𝐹
𝐶𝑙𝑏1,2 → 𝐶𝑑ℎ1

𝐶𝑙𝑏1,2 → 𝑀𝑐𝑚1 /𝑆𝐹𝐹
𝐶𝑙𝑏1,2 → 𝑆𝑤𝑖5

𝑀𝑐𝑚1 /𝑆𝐹𝐹 → 𝐶𝑙𝑏1,2
𝑀𝑐𝑚1 /𝑆𝐹𝐹 → 𝐶𝑑𝑐20/𝐶𝑑𝑐14
𝑀𝑐𝑚1 /𝑆𝐹𝐹 → 𝑀𝑐𝑚1/𝑆𝐹𝐹

𝑀𝑐𝑚1 /𝑆𝐹𝐹 → 𝑆𝑤𝑖5
𝐶𝑑𝑐20 /𝐶𝑑𝑐14 → 𝑆𝑖𝑐1
𝐶𝑑𝑐20 /𝐶𝑑𝑐14 → 𝐶𝑙𝑏5,6
𝐶𝑑𝑐20 /𝐶𝑑𝑐14 → 𝐶𝑑ℎ1
𝐶𝑑𝑐20 /𝐶𝑑𝑐14 → 𝐶𝑙𝑏1,2

𝐶𝑑𝑐20 /𝐶𝑑𝑐14 → 𝐶𝑑𝑐20 /𝐶𝑑𝑐14
𝐶𝑑𝑐20 /𝐶𝑑𝑐14 → 𝑆𝑤𝑖5

𝑆𝑤𝑖5 → 𝑆𝑤𝑖5

Lost of S and G2 phases:
𝑀𝐵𝐹 → 𝐶𝑙𝑏5,6

Lost of S, G2 and M phases:
𝑆𝑤𝑖5 → 𝑆𝑖𝑐1

Non-Essential Edges Essential Edges

No pathway found
𝐶𝑙𝑛3 → 𝑆𝐵𝐹
𝑆𝐵𝐹 → 𝐶𝑙𝑛1,2

5

4
21

Total: 30

1

1

2

Total:4
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Application to Gene Regulatory Network

Mutation Analysis

Comparison of Results

Deterministic Stochastic

No effect:
𝐶𝑙𝑏5,6 → 𝑆𝑖𝑐1
𝐶𝑙𝑏5,6 → 𝐶𝑑ℎ1
𝐶𝑑ℎ1 → 𝐶𝑙𝑏1,2
𝐶𝑙𝑏1,2 → 𝑆𝑖𝑐1

𝐶𝑙𝑏1,2 → 𝐶𝑑𝑐20/𝐶𝑑𝑐14

Small effect:
𝐶𝑙𝑏5,6 → 𝑀𝑐𝑚1 /𝑆𝐹𝐹

𝐶𝑙𝑏1,2 → 𝐶𝑑ℎ1
𝐶𝑙𝑏1,2 → 𝑀𝑐𝑚1 /𝑆𝐹𝐹

𝐶𝑙𝑏1,2 → 𝑆𝑤𝑖5
𝑀𝑐𝑚1 /𝑆𝐹𝐹 → 𝐶𝑙𝑏1,2

𝑀𝑐𝑚1 /𝑆𝐹𝐹 → 𝐶𝑑𝑐20/𝐶𝑑𝑐14

Lost of G2 phase:
𝐶𝑙𝑛1,2 → 𝐶𝑑ℎ1
𝑆𝑖𝑐1 → 𝐶𝑙𝑏5,6
𝐶𝑙𝑏5,6 → 𝐶𝑙𝑏1,2

Small effect:
𝐶𝑙𝑛3 → 𝐶𝑙𝑛3
𝐶𝑙𝑛3 → 𝑀𝐵𝐹

𝐶𝑙𝑛1,2 → 𝐶𝑙𝑛1,2
𝑆𝑖𝑐1 → 𝐶𝑙𝑏1,2
𝐶𝑙𝑏1,2 → 𝑆𝐵𝐹
𝐶𝑙𝑏1,2 → 𝑀𝐵𝐹

𝑀𝑐𝑚1 /𝑆𝐹𝐹 → 𝑀𝑐𝑚1/𝑆𝐹𝐹
𝑀𝑐𝑚1 /𝑆𝐹𝐹 → 𝑆𝑤𝑖5
𝐶𝑑𝑐20 /𝐶𝑑𝑐14 → 𝑆𝑖𝑐1
𝐶𝑑𝑐20 /𝐶𝑑𝑐14 → 𝐶𝑙𝑏5,6
𝐶𝑑𝑐20 /𝐶𝑑𝑐14 → 𝐶𝑑ℎ1
𝐶𝑑𝑐20 /𝐶𝑑𝑐14 → 𝐶𝑙𝑏1,2

𝐶𝑑𝑐20 /𝐶𝑑𝑐14 → 𝐶𝑑𝑐20 /𝐶𝑑𝑐14
𝐶𝑑𝑐20 /𝐶𝑑𝑐14 → 𝑆𝑤𝑖5

𝑆𝑤𝑖5 → 𝑆𝑤𝑖5

Lost of G2 phase:
𝐶𝑙𝑛1,2 → 𝑆𝑖𝑐1

Lost of S and G2 phases:
𝑀𝐵𝐹 → 𝐶𝑙𝑏5,6

Lost of S, G2 and M phases:
𝑆𝑤𝑖5 → 𝑆𝑖𝑐1
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Conclusion

We developed a methodology supported by theoretical results
for quantifying transition processes in time-irreversible Markov
chains.

This technique is applied to the Budding yeast GRN.

Stochastic GRN is much more robust to mutation analysis
compared to deterministic GRN.

Future research:

Develop strategy for selecting key subset of nodes to make
applicable to larger and more complex networks.
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Framework for Quantifying Transitions

Cameron and Vanden-Eijnden (2013)

Two modified Markov jump processes were designed for the
original time-reversible irreducible Markov chain.

The stationary probability current coincided with the
probability current of reactive trajectories.

The stationary probability current was equal to the reactive
current.

Cameron and Middlebrooks

Combined these two propositions to a generalized version for
time-irreversible Markov chains.
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Theorem (Transition Path Process: Cameron & Middlebrooks)

Suppose we have defined a current e satisfying the following properties:
[1.] Non-negativity: eij ≥ 0
[2.] The conservation of current: ∀i ∈ SR ,

∑
j∈S

(eij − eji ) = 0

[3.] Transition rate:
∑
i∈A

∑
j∈S

eij =
∑
i∈S

∑
j∈B

eij = νAB

Let SR = S \ (A ∪ B) and R := {i ∈ SR |∃j ∈ S : eij > 0}. Consider the process
on the state space S̃ = R ∪ {s} defined by the generator M given by

Mij =
eij
µi
, i , j ∈ R

Mis =
∑
j∈B

eij
µi
, i ∈ R

Msj = 1
1−ρR

∑
i∈A

eij , j ∈ R

(10)

where ρR =
∑
i∈R

µi . Then the desired invariant probability distribution of the

transition path process is given by µ̃i =

{
µi , i ∈ R

1− ρR , i = s
and the stationary

current in the network with state space S̃ and the generator matrix M coincides
with the current e in the original network.
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Framework for Quantifying Transitions

Outline of proof

Proof.

To show the stationary current in the network with state space S̃
and the generator matrix M coincides with the current e in the
original network we must show the following:

The invariant distribution in the modified MJP is µ̃, i.e show∑
i∈R∪{s}

µ̃iMij = 0.

The stationary current in the MJP with generator matrix M
coincides with stationary current Ei ,j = ei ,j − ej ,i .
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