(i)

NAVIGATING PU(2) WITH

GOLDEN GATES

PETER SARNAK

FIELD OF DREAMS

NOY | 2018

A PRACTICE PROBLEM U(1)

SEEK THE BEST TOPOLOGICAL GENERATOR OF G.

Rx: 0 -> 0+0x, ROTATION BY OX

(Rx) THE GROUP GENERATED BY RX

$$R_{x}^{j} = R_{jx}$$
, $j=1,2,...,k$,

<p

HON WELL DOES RX, j=1, .., k COVER G?

 $L_{k}(x) := \max_{I \subset G} |I| \qquad \text{I-NTERVAL}$ $I \cap \{\alpha, 2\alpha, ..., k\alpha\} = \phi$

CLEARLY LK(x)>1/k

Figure 1. (a) The first 45 iterates of x=0 under R_{ϕ} for $\phi=\left(\sqrt{5}-1\right)/2$. (b) The first 45 iterates of x=0 under R_{θ} for $\theta=4-\pi$. Iterates are labelled and arcs between consecutive points in each orbit are colored according to their relative length.

Francis C. Motta, Patrick D. Shipman, and Bethany D. Springer

THEOREM (GRAHAM /VAN LINDT, V. 505):

Lim $k L_{\infty}(k) > 1 + \frac{2}{\sqrt{5}}$, $k \to \infty$ WITH EQUALITY IFF) $\alpha = \phi = \frac{1+\sqrt{5}}{2}$

MOREOVER GIVEN IC RIZ AN INTERVAL

DETERMINE IF THERE IS IS IS & WITH

j & E I?

ONE CAN USE EUCLID'S ALGORITHM
FOR GCD'S TO ANSWER THIS IN
POLYLOG(R) STEPS!

TOPOLOGICAL GENERATOR OF U(1)

AND ONE CAN NAVIGATE EFFICIENTLY WITH R&.

PROBLEM IS TO DO THE SAME G=5U(2) OR PU(2). FOR

$$G=SU(2)={g\in GL_2:gg=I,detg=1}$$

 $(PU(2)=U(2)/5CALAR MATRICES)$

G 15 A TOPOLOGICAL (COMPACT) GROUP BI-INVARIANT METRIC $d_{G}^{2}(g,h) = 1 - \frac{|\text{trace}(g^{*}h)|}{2}$

$$d_{\mathcal{G}}(gy,hy)=d_{\mathcal{G}}(yg,yh)=d_{\mathcal{G}}(g,h)$$
 $g,h,y\in\mathcal{G}$

VOLG IS THE CORRESPONDING INVARIANT HAAR MEASURE ON G VOL(G)=1, VOL (Ag)=Vol(gA)=Vol(A). · OUR AIM IS TO GIVE OPTIMAL TOPOLOGICAL GENERATIONS OF G AND TO NAVIGATE

EFFICIENTLY.

SINGLE BIT X \{ \{ 0, 1 \}

· ONE BIT NOT GATE

 $\sim \infty$, \propto —

. TWO BIT AND GATE

 $x_1 \wedge x_2$, $x_1 \longrightarrow$ $x_2 \longrightarrow$

AN M-BIT CIRCUIT IS A BOOLEAN FUNCTION

\$\frac{1}{2}:\{0,1\}^n\rightarrow\{0,1\}^2

E6: $x_1 \longrightarrow x_2 \longrightarrow x_3$ $x_3 \longrightarrow x_4 \longrightarrow x_4 \longrightarrow x_4 \longrightarrow x_4 \longrightarrow x_5$

THE GATES { NOT, AND } ARE UNIVERSAL', EVERY & CAN BE EXPRESSED AS A CIRCUIT USING THESE GATES.

. THE SIZE OF A CIRCUIT IS ITS COMPLEXITY.

THEORETICAL QUANTUM COMPUTING

A SINGLE QUBIT STATE IS A UNIT VECTOR Y IN ¢2

$$\Psi = (\Psi_1, \Psi_2), |\Psi|^2 = \Psi_1 \Psi_1 + \Psi_2 \Psi_2 = 1$$

·A ONE BIT QUANTUM GATE IS AN ELEMENT

geU(2) (OR SU(2), PU(2):=G) ACTING ON Y'S

[X) — [9] — [4)

$$g = \begin{bmatrix} \alpha & \beta \\ \gamma & s \end{bmatrix}, g^* = \begin{bmatrix} \overline{\alpha} & \overline{\delta} \\ \overline{\beta} & \overline{s} \end{bmatrix}; gg^* = \mathbf{I}$$

$$5U(2)$$
: $9 = \begin{bmatrix} \alpha & \beta \\ -\overline{\beta} & \alpha \end{bmatrix}$, $|\alpha|^2 |\beta|^2 = 1$

THE ONE BIT GATES $g \in G$, Together U WITH XOR ARE UNIVERSAL FOR QUANTUM COMPUTING. THAT IS ANY $g \in U(2^n)$ can be expressed as a circuit in these.

EG: THREE BIT QUANTUM FOURIER TRANSFORM

HADAMARD $H = \frac{1}{2} \begin{bmatrix} 1 & -1 \end{bmatrix}$ $-\frac{1}{2}$ PAULI $X = \begin{bmatrix} 0 & -1 \end{bmatrix}$ $-\frac{1}{2}$ PAULI $Y = \begin{bmatrix} 0 & -1 \end{bmatrix}$ $-\frac{1}{2}$ PAULI $Z = \begin{bmatrix} 0 & -1 \end{bmatrix}$ $-\frac{1}{2}$ PHASE $S = \begin{bmatrix} 0 & -1 \end{bmatrix}$ $-\frac{1}{2}$

THESE ELEMENT GENERATE THE CLIFFORD GROUP C24 OF ORDER 24 IN G.

Cay 15 NOT DENSE IN G.

MOST TREATMENTS ADD THE "T-GATE"

$$T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$$

$$T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$$

C24 PLUS T GENERATE A DENSE SUBGROUP AND ARE AN EXAMPLE OF A GOLDEN GATE SET (KLIUCHNIKOV-MASLOV-MOSCA).

F={C24, T, XOR} IS UNIVERSAL AND HAS SOME OPTIMAL PROPERTIES.

- THE T-GATE IS CONSIDERED EXPENSIVE IN CIRCUITS IN G FROM VARIOUS POINTS OF VIEW INCLUDING FAULT TOLERANCE.
 - THE COMPLEXITY OF A CIRCUIT

 IN C24 + T IS THE T-COUNT,

IE NUMBER OF APPLICATIONS OF T.

50(5) DOUBLE COVERS 20(3)

 $g \in SU(2)$, $g = \begin{bmatrix} \alpha & \beta \\ -\overline{\beta} & \alpha \end{bmatrix}$, $TRACE(g) = 0 \Leftrightarrow$ $g = \begin{bmatrix} ix_2 & x_3 + ix_4 \\ -x_5 + ix_4 & -ix_2 \end{bmatrix}$

 $(x_2, x_3, x_4) \iff \text{tyrace} (9) = 0$ $x_2^2 + x_3^2 + x_4^2 = 1$

 $(x_2, x_3, x_4) \rightarrow g \begin{bmatrix} ix_2 & x_3 + ix_4 \\ -x_3 + ix_4 & -ix_2 \end{bmatrix} g$

gives a rotation in (x_2, x_3, x_4) , call it $\pi(g)$. $\pi(g) \in SO(3)$

 $5U(2) \xrightarrow{T} 50(3).$

C24 -> ROTATIONS OF A CUBE.

SOLOVAY - KITAEV THEOREM:

GIVEN A, B TOPOLOGICAL GENERATORS, OF G, FOR E>O AND 9 F ONE CAN FIND A WORD W(A, B) OF LENGTH

O((log 1/E)) AND IN AS MANY STEPS

5.T. d(W,9)< E (HERE C 24).

THIS GIVES A CRUDE BUT REASONABLY EFFICIENT ALGORITHM TO NAVIGATE G.

BAJIC PROBLEM; OPTIMAL GENERATORS FOR G: 18

GIVEN A FINITE SUBGROUP C OF G TO FIND AN INVOLUTION T (T=1) SUCH THAT F = CUETS GENERATES G TOPOLOGICALLY OPTIMALLY IN TERM OF COVERING G WITH SMALL T-COUNT, AND WITH AN EFFICIENT NAVIGATION ALGORITAM.

THE CIRCUITS S(t) IN THE GATES F WITH T-COUNT t ARE OF THE FORM

 $C_1 + C_2 + \cdots + C_k + \cdots$

THE PROPERTIES THAT WE WANT ARE

(I) $S_F(t)$, $t \le k$ ARE DISTINCT ELEMENTS IN G.

(II). IF $N_F(k) = \bigcup_{t \in R} J_F(t) \bigcup_{t$

U U B9 COVERS G. t=k geSf(t)

FOR THIS TO HAPPEN WE NEED $Vol(B) N_F(k) \ge 1$.

WE RELAX THIS A LITTLE, REQUIRING THAT IF VO((B) NF(k) -> 00 VERY SLOWLY THEN WE (ALMOST) COVER G.

(III) NAVIGATION: GIVEN XEF AND A BALL B CENTERED AT X, FIND EFFICIENTLY (IE IN POLY &) A SEFUL SF(t)]/B, IF SUCH EXISTS.

THE (INTERESTING) FINITE SUBGROUPS OF G ARISE AS THE ROTATIONAL SYMMETRIES OF THE A PLATONIC SOLIDS. 1A41=12 , A4 TETRHEDRON $|S_4| = 24$, S₄ CUBE /OCTAHEDRON |A5| = 60. , A5 DODE CAHEDRON/ I COSAHEDRON. JUPER-GOLDEN GATES (PARZANCHEVSKI-S): (1) CUBE, PAULI GROUP $C_{4} = \langle (0, -i), (0, -i) \rangle$, $T_{4} = \begin{pmatrix} 1 & 1-i \\ 2+i & -1 \end{pmatrix}$ (2) MINIMAL CLEFFORD (OCTAHEDRON). $C_3 = \{(1,0), (1,1), (1,1)\}, T_3 = \{(1,0), (1,0)\}, T_3 = \{(1,0),$

(3) TETRAHEDRON, HURNITZ
$$C_{12} = \left\langle \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix} \right\rangle, T_{12} = \begin{pmatrix} 3 & 1-i \\ 1+i & -3 \end{pmatrix}$$

$$C_{24} = \langle 5, H \rangle$$
, $T_{24} = \begin{pmatrix} -1-\sqrt{2} & 2-\sqrt{2}+i \\ 2-\sqrt{2}-i & 1+\sqrt{2} \end{pmatrix}$

$$C_{60} = \left\{ \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}, \begin{pmatrix} 1 & \phi - i/\phi \\ \phi + i/\phi & -1 \end{pmatrix} \right\}$$

$$\phi = \frac{1+\sqrt{5}}{2} \quad \text{(GOLDEN RATIO)}, \quad \overline{60} = \begin{pmatrix} 2+\phi & 1-i \\ 1+i & -2-\phi \end{pmatrix}$$

THEOREM:

THESE SUPER GATE SETS SATISFY.
(I), (II) AND PART OF (III).

MORE PRECISELY CONCERNING NAWGATION (III) IF GEG 13 DIAGONAL AND ONE CAN FACTOR INTEGERS EFFICIENTLY, THEN THERE IS A HEURISTIC EFFICIENT ALGORITHM (ROSS-SELINGER) WHICH FINDS THE SHORTEST CIRCUIT WITH KSK BEST APPROXIMATING 9. ON THE OTHER HAND IF 9 15 A GENERAL ELEMENT IN G THEN FINDING THE SHORTEST CIRCUIT APPROXIMATING 9 13 ESSENTIALLY NP-COMPLETE!

NEVER-THE-LESS A CIRCUIT
3-TIMES LONGER THAN THE
SHORTEST ONE CAN BE FOUND EFACIENTLY

JOME INGREDIENTS IN THE ANALYSIS: 15

WE SAW THAT

$$SU(2) \stackrel{ISOMETRIC}{\longleftarrow} 5^3 \subset \mathbb{R}^4$$

 $S(2) \stackrel{2}{\longleftarrow} + x_3^2 + x_4^2 = 1$

THE ARITHMETIC SET UP FOR THESE GOLDEN GATES IS SO THAT THE WORDS IN F OF T-COUNT t CORRESPOND TO SOLUTIONS IN INTEGERS TO

$$3710NS /N /N7EGERS (*)$$

 $3x_1^2 + 3x_2^2 + 3x_3^2 + 3x_4^2 = P - (*)$

HERE P = 3 FOR C_{4} P = 11 FOR C_{12}

FOR C24 (*) IS TO BE SOLVED IN INTEGERS IN O=ZZ [VZ] AND ZEZ; NORM(2)=23

FOR C60 (*) IS TO BE SOLVED,

IN OF THE INTEGERS IN Q(V5), P IS IN O
N(P) = 59.

PROBLEM (II) BECOMES ONE OF VERY
STRONG APPROXIMATION FOR

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = n$$

LET THE INTEGER SOLUTIONS BE 5(n), $|5(n)|=N(n)(\approx n)$

PROJECT THESE N(n) POINTS
ONTO 53

ONTO 53

OC - CC S(n).

HOW WELL DO THESE N(n)
POINTS COVER 53 ?

OPTIMALLY IN THE SENSE OF (II)

RELIES ON THE RAMANUJAN CONJECTURES - DELIGNE'S THEOREM.

FOR THE NAVIGATION WE NEED TO FIND SOLUTIONS TO SUMS OF SQUARES

$$\chi_1^2 + \chi_2^2 = \eta \qquad - (1)$$

$$\chi_1^2 + \chi_2^2 = \eta \qquad - e_1 \dots P_k^{e_k}$$

IT IS SOLVABLE IFF 1 = Pi PK WITH ej EVEN WHEN Pj = 3(4).

CAN WE FIND A SOLUTION EFFICIENTLY, IE IN POLY (log #) STEPS?

· FOR P=1(4) A PRIME SCHOOF GIVES A (LGP) ALGORITHM TO FIND X, AND X2.

HENCE IF WE CAN FACTOR M EFFICIENTLY WE CAN SOLVE (1) EFFICIENTLY BY SIMPLY MULTIPYING THE SOLUTIONS IN ZITI.

NOTE: WHILE FACTORING IS NOT KNOWN TO BE EFFICIENT (I.E. IN P) NO THEORETICAL EVIDENCE THERE 15 IS NOT IN P. A QUANTUM THAT IT COMPUTER CAN FACTOR EFFICIENTLY (SHOR'S THEOREM) SO WE MIGHT WANT TO AVOID FACTORING IN BUILDING EFFICIENT GATES. THE ROSS-SELINGER ALGORITHM FOR NAVIGATING TO DIAGONAL JEG WILL YIELD A SOLUTION WHICH HAS A (1+0(1)) TIMES LONGER T-COUNT THAN THE OPTIMAL, WITHOUT APPEALING TO FACTORING.

IF WE ADD TO THE QUADRATIC DIOPHANTIME PROBLEM (1)
A SIMPLE APPROXIMATION CONDITION
THINGS CHANGE DRAMATICALLY.

. THE TASK: GIVEN MEN, &, BEQ FIND INTEGERS X1, X2 S.T.

$$\chi_1^2 + \chi_2^2 = n$$

$$\alpha < \frac{x_1}{x_2} \le \beta$$

15 NP-COMPLETE!

IDEA OF PROOF: REDUCE TO SUBSUM PROBLEM GIVEN t_1, \ldots, t_m , ℓ integers is there $\epsilon_1, \ldots, \epsilon_m$, $\epsilon_1, \ldots, \epsilon_m$, $\epsilon_2, \ldots, \epsilon_m$.

EXPLOIT M'S OF THE FORM PIPZ....Pm
Piz SMALL.

THE MOST DIFFICULT PART OF THE NAVIGATION ALGORITHM IS TO SOLVE: TASK: GIVEN $M \in \mathbb{N}$, $3 \in \mathbb{S}^3$ AND A BALL B CENTERED AT 3,

FIND $X \in \mathbb{S}(n)$ (IF SUCH EXISTS)

SUCH THAT $\mathcal{H} = \frac{2}{\sqrt{n}} \in \mathbb{B}$.

THE TASK IS NP-COMPLETE, BUT

IF 3=(31,32,33,34) HAS TWO OF 175

CO-ORDINATES EQUAL TO O ("DIAGONAL")

THEN ASSUMING THAT ONE CAN FACTOR

EFFICIENTLY THE TABOVE TASK CAN

BE DONE EFFICIENTLY.

THE ALGORITHM USES A
CONVEX INTEGER PROGRAM IN
FIXED DIMENSION (2 AND 4)
WHICH IS IN P (LENSTRA)
AND ALSO SCHOOF'S ALGORITHM.

THE KEY POINT IS THAT THESE SUPER GATES ARE SET UP SO THAT THERE IS AN EXPLICIT HOMOMORPHISM

 $PGL(2, Q_p)$ $PGL(2, Q_p)$

THE T-COUNT CORRESPONDING TO DISTANCE MOVED ON THE TREE.

THE MIRACLE OF THESE
GATES IS THIS SIMPLE TRANSITIVE
ACTION AND THE ARE ONLY FINTELY MANY 1/5.