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Figure 1. (a) The first 45 iterates of x = 0 under Ry for ¢ = (ﬁ — 1) /2. (b) The first 45 iierates of x = 0

under Ry for 8 = 4 — ;. Iterates are labelled and arcs between consecutive points in each orbit are colored
according to their relative lengih.
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